مدة الإنجاز: 3 ساعات		الامتحان التجريبي دورة مارس 2008		المملكة المغربية وزارة التربية الوطنية والتعليم العالي وتكوين
الثانية باكالوريا	المستوى	الرياضيات	مادة	الأطر والبحث العلمي قطاع التربية الوطنية
2P.C + 2S.V.T	الشعبة			الأكاديمية الجهوية للتربية الوطنية والتكوين
ميلود أجدي	من إنجاز الأستاذ	7	المعامل	لجهة الدار البيضاء الكبرى ثانوية العاليا التأهيلية نيابة المحمدية

الموضوع	التنقيط
التمرين الأول:	<u> </u>
$I = \int_0^2 \frac{x^2}{\sqrt{1+x^3}}$: التكامل التالي : $-(1)$	0,75
IR^* اکل $\frac{e^{2x}+1}{e^x-1}=e^x-1+rac{2e^x}{e^x-1}$: اک e^x-1 : انحقق أن e^x-1	0,5
$J = \int_{\ln 2}^{\ln 3} rac{e^{2x} + 1}{e^x - 1} dx$: ب) أحسب التكامل : ب	0,75
. (E) $y''-6y'+9y=0$: حـل المعادلة : (3	0,5
$f\left(0 ight)=f'\left(0 ight)=-1$: و الذي يحقق $\left(E ight)$ و الذي الحلل $\left(E ight)$ للمعادلة التفاضلية	0,5
$U_0=rac{3}{2}$ $U_0=rac{3}{2}$ $U_{n+1}=rac{4U_n}{3+U_n}$: لتكن $U_{n+1}=rac{4U_n}{3+U_n}$	4 ن
$V_n = \frac{U_n}{U_n - 1}$: نضع IN نضع n لکـل	
. $(\forall n \in IN)$. $U_n > 1$ بين أن $- (1$	0,5
بين أن المتتالية $(U_n)^n$ تناقصية واستنتج أنها متقاربة.	,
. بين أن المتتالية $\binom{V_n}{n}$ هندسية أساسها $\frac{4}{3}$ ثم حدد $\binom{4}{n}$ بدلالة المتتالية $\binom{4}{n}$	0,75 0,75
. (U_n) ثم حدد نهایة $U_n=\frac{3}{3-\left(\frac{3}{4}\right)^n}$: بین أن $U_n=\frac{3}{3-\left(\frac{3}{4}\right)^n}$	1
$W_n = \frac{V_n}{n^2}$: نضع IN^* ککل $-(4)$	
IN^* اکل اکل $W_n=3e^{n\ln\left(rac{4}{3} ight)-2\ln n}$: ابین أن $W_n=3e^{n\ln\left(rac{4}{3} ight)}$	0,5
. $\left(W_n ight)_{n\geq 1}$ ب W_n استنتج نهایة المتالیة	0,5

الموضوع	التنقيط
التمرين الثالث:	4 ن
$a = 1 - \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}$ و $a = 1 + \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}$: نعتبر العددين العقديين	
. $ a =\sqrt{2+\sqrt{2}}$ و $ab=1-i$: بين أن $ab=1-i$	0,75
IR کا $1 + \cos\theta + i\sin\theta = 2\cos\left(\frac{\theta}{2}\right)\left(\cos\left(\frac{\theta}{2}\right) + i\sin\left(\frac{\theta}{2}\right)\right)$: اکا θ من $-(2$	0,75
$a=1+\left(cosrac{\pi}{4}+isinrac{\pi}{4} ight)$ ب $$ استنتج أن $a=2cosrac{\pi}{8}e^{irac{\pi}{8}}$ و قيمة $a=2cosrac{\pi}{8}e^{irac{\pi}{8}}$	0,75
. b حدد الشكـل المثلثي للعدد العقدي $l-i$ ثم للعدد العقدي $-(3$	0,75
(4) في المستوى المنسوب إلى معلم متعامد ممنظم مباشر $(O;\vec{i};\vec{j})$ ، نعتبر النقط:	
و $B(b)$ و $C(c)$ بحيث الرباعي OACB متوازي الأضلاع.	
اً) حدد c لحق النقطة C ثم قياسا للزاوية الموجهة c .	0,75
ب) - تحقق أن الرباعي OACB مستطيل.	0,25
التمرين الرابع:	9ن
. $g\left(x ight) = 1 + x \ln x$: لتكن g الدالة العددية المعرفة على $g(x) = 0$; بما يلي $g\left(x ight) = 0$	
 1) – أدرس تغيرات g .	0,75
. $g(x)$ استنتج أن $g(x) \ge 1 - \frac{1}{e}$ لكل $g(x)$ من $g(x) = 0$ و استنتج إشارة $g(x)$	0,5
$[0;+\infty[$ اکال x من $x \ge 0$: بین أن $x \ge 0$ اکال $x \ge 0$ اکال $x \ge 0$.	0,75
$f(x) = (\ln x)^2 + \frac{\ln x}{x} + 1$: نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة كما يلي $-$ II	
و ليكن (\mathscr{C}_f) المنحنى الممثل للدالة f في معلم متعامد ممنظم.	
. $\lim_{x o +\infty}f\left(x ight)$ مجموعة تعريف الدالة f واحسب النهاية D_f عدد D_f	0,75
$\lim_{\substack{x \to +\infty \\ x \to 0}} f(x) = -\infty$: بين أن $\lim_{\substack{x \to 0 \\ > 0}} f(x) = -\infty$	0,5
.]0; + ∞ [کی x کی $f'(x) = \frac{(x-1)\ln x + g(x)}{x^2}$: بین أن $-(3-1)$	1
ب) حدد جدول تغيرات الدالة f	0,5
(\mathcal{C}_f) بين أن $\lim_{x \to +\infty} \frac{(\ln x)^2}{x}$ ثم حدد الفرع اللانهائي للمنحنى -(4	1
. $A(1;f(1))$ عند النقطة (\mathcal{C}_f) مماس المنحنى عند النقطة $-(5)$	0,25
و المنحنى $({\mathcal C}_f)$ و المنحنى (T) و المنحنى $-(6)$	1,25
انشئ المماس T) و المنحنى $ig(\mathscr{C}_f ig)$ و المنحنى T و المنحنى -6 -6 المحمال مكاملة بالأجزاء مرتين بين أن T المحمال مكاملة بالأجزاء مرتين بين أن T	0,75

الموضوع	التنقيط
$\int_1^e rac{\ln x}{x} dx$: احسب التكامل : ب	0,5
ج) حدد مساحة الحيز المحصور بين المنحنى $\left(\mathcal{C}_f\right)$ و محور الأفاصيل و المستقيمين $x=e$ و $x=1$: المعرفين بالمعادلتين $x=e$ و $x=1$	0,5